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In this paper, the nonlinear conduction behavior of high-density polyethylene (HDPE)/graphite
nanosheets composites above the percolation threshold was investigated. For some samples,
the I–V curves are smooth and the nonlinear term is cubic, rather than quadratic. However, for
other samples, the onset of nonlinearity is accompanied by the appearance of steps in I–V
curves. Furthermore, the crossover current Ic for two types of curves at which nonlinearity
occurs scales with the linear conductance �1 as Ic ∼ �x

1, with x ≈ 1.28. And the second-order
conductance, �2, also scales with �1 as �2 ∼ �

y
1, with y ≈ 1.00. Two classical models, NLRRN

(nonlinear random resistor network) and DRRN (dynamic random resistor network), cannot
fully explain our experimental results. It is likely that a combination of these two models may
account for the nonlinear feature better. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Recently, composites based on conducting fillers dis-
persed within insulator matrices have been the subject
of both theoretical and experimental studies. Character-
istics features in such disordered media are nonlinear
conduction behavior and its enhancement in the vicinity
of the percolation threshold where a spanning conductive
network appears for the first time and many physical
quantities (i.e., electrical conductance) become unsteady
[1]. Moreover, composites with highly nonlinear current
voltage relationship were used to develop varistors for
protecting against transient overvoltages [2]. Conse-
quently, there exists a strong motivation for studying
these intriguing features for further understanding and
possible practical applications [2].

Generally speaking, two kinds of nonlinear transports in
such conducting mixtures of an insulator and a conductor
can be distinguished. One is electrical failure taking place
irreversibly in extreme conditions either due to applica-
tion of high voltage (dielectric breakdown [3]) or current
(burning of fuse [4]), namely, irreversible nonlinearities.
The other kind corresponds to the phenomenon that elec-
trical conduction becomes reversibly nonohmic (nonlin-
ear) because of application of small bias of voltage or
current [5], that is, reversible conduction. Such reversible
nonlinear transports are in the subject of this study.
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Nonlinearity in disordered composites may arise in
two ways. In one case, the conducting elements may
be intrinsically nonlinear [6], and in another, the con-
ducting elements are ohmic but macroscopic conduc-
tance becomes nonlinear due to possible appearance of
additional channels resulting from tunneling or hop-
ping in disordered media within insulating regions [5].
However, the nonlinearity, in both cases, is enhanced
as P (volume fraction of conducting phase) tends to-
wards Pc (the percolation threshold of the compos-
ites) either from below (as in normal–super conductor
mixtures [7]) or from above (as in conductor-insulator
mixtures [8]).

Following detailed diagram was proposed to illus-
trate nonlinear conduction in disordered media at a fixed
T (temperature) and P (volume fraction of conducting
phase) close to the percolation threshold [9]. It can be
seen that, from the below figure, � is practically con-
stant in the linear regime (a); a crossover from linear to
nonlinear regime at a bias V0 (onset voltage) occurs, as
V is increased; the conductance still increases at a lower
rate and approaches a constant value corresponding to
saturated state (b); the c region is actually the Joule or
irreversible region in which application of high current
causes � to decrease gradually before irreversible state of
breakdown or destruction.
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T AB L E I Symbols and denotations

Symbols and denotations Meaning

� conductance
�1 linear conductance
�2 second order conductance
Ic crossover current
Vc crossover voltage
ρ resistivity
P volume fraction
Pc percolation threshold
t conductivity exponent
v correlation length critical exponent
L sample size
ξ correlation length
d dimensionality of the composite
r constant
A constant
x exponent
y exponent
b exponent
z V/Vc

NLRRN nonlinear random resistor network
DRRN dynamic random resistor network
NLRDRN nonlinear random dynamic resistor

network
HDPE high-density polyethylene

However, surprisingly, reversible nonlinear conduction
has not received sustained attention of the people working
with disordered composites, compared with temperature-
dependent nonlinearity [9, 10]. Based on studying the non-
linear behavior of a two dimensional system of the gold
films near percolation threshold, Gefen et al. [5] found
that Ic (crossover current) and �1 (linear conductance)
obeyed a scaling relationship. Furthermore, two theoret-
ical models for onset of nonlinear conduction, nonlinear
random resistor network (NLRRN) and dynamic random
resistor network (DRRN), were offered to explain the de-
viation from linear characteristics and the power law for
the crossover point. And the experimental results of gold
films were in fair agreement with predictions of DRRN
model, however, Chen et al. [11] reported that neither of
these two models could account for the nonlinearity of
I–V curves of nylon-6/FG composites.

Figure 1 Nonlinear conduction behavior of conductance � as a function
of the bias V at fixed T and P.

In this paper, we focus on the reversible nonlinear I–V
characteristics of HDPE/graphite nanosheets nanocom-
posites above the percolation threshold and applicability
of these two models mentioned above. We will show that
it is impossible, through the application of two classical
models, to completely interpret the nonlinear conduction
behavior in our case.

2. Experimental procedures
2.1. Materials
The conductive filler used here consists of graphite
nanosheets with an average thickness of about 50 nm
and an average diameter of about 12 µm. High-density
polyethylene (HDPE) (ρ = 0.95 g/cm3, melting point =
120◦C) is supplied by Petrochemical Ind. Co. Ltd.

2.2. Fabrication of HDPE/graphite nanosheets
nanocomposites

Detailed procedures and conditions for elaboration of
graphite nanosheets were described in our previous pa-
pers [12, 13]. The HDPE/graphite nanosheets composite
was prepared via a two-roll mill. Brief procedures were as
follows: preweighed HDPE and graphite nanosheets were
mixed on a two-roll mill and then molded to form sheet
samples with 20 mm in length, 15 mm in width and 1.5 m
in height.

2.3. Measurements
Seven samples were measured in this paper. The resis-
tances of seven samples were fitted to the relation [1]
ρ ∼ (p − pc)−t , where t is conductivity critical exponent
and pc is the percolation threshold. And we found that pc

is 0.11 by volume and t is 3.02.
Measurements of the I–V characteristics 25◦C were

performed in the axial direction and at. An YJ78 direct-
current standard voltage generator (Shanghai No. 2 Elec-
trometer Factory) was used as the voltage source. To en-
sure good contact conductive paint was applied on the flat
surfaces of the samples hold between two circular brass
electrodes. To minimize Joule heating, the effective cur-
rent through the samples was recorded immediately after
a voltage was applied. V and I were collected with two
DT9205 A (Haidi, Shenzhen, China) meters.

3. Theory
The first model proposed to account for current-voltage
nonlinearity in disordered composites is a random resis-
tor network of intrinsically nonlinear resistors, which is
referred to as nonlinear random resistor network [5]. As-
suming that each resistor has a small, nonlinear compo-
nent, the current-voltage characteristics can be expressed
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as following:

V = rI − AIα (1)

where r and A are constants and α is an exponent greater
than 1. For sufficiently small application of current,
the conduction behavior is considered to be linear. The
crossover current, beyond which the overall conductance
deviates from the linear conductance, is defined:

Ic ∼ (r/|A|)1/(α−1) (2)

The second model, dynamic random resistor network
[5], postulates that the conductive backbone is perfectly
linear but requires that each of these bonds which are non-
conducting at low voltages becomes conductive when the
voltage across it exceeds a critical value Vc. Such change
in bond characteristics is considered to be reversible with
application of low bias and can be regard as modeling in
a reasonable manner the phenomenon of nonlinear hop-
ping between dangling bonds across insulating regions in
disordered mixtures.

The crossover current Ic and linear conductance �1

fulfill the following scaling relationship:

Ic ∼ �x
1 (3)

where x is a critical exponent, directly related to dimension
and to the type of models used to explain the nonlinearity
of composites. However, the critical values, x, follows:

x ≤ (ν/t)(d − 1) in the NLRRN (4)

x ≤ 1 + ν/t in the DRRN (5)

where ν is the correlation length critical exponent, d is
the dimensionality of the composite and t is the critical
percolation exponent in the classical percolation theory
[1]. And the bounds [15], in three dimensions, have been
established for x as

0.97 ≤ x ≤ 1.05 in the NLRRN (6)

x ≤ 1.52 in the DRRN (7)

The limits on the values of x are valid when the exponent
α satisfies the inequality:

1 < α < ∞ (8)

4. Results and Discussion
4.1. Nonlinear conduction in HDPE/graphite

nanosheets nanocomposites
The basic characteristics of nonlinear conduction are that
the conductance of a given sample is no longer a constant
and the I–V curves will not be a linear function of the
applied voltage. Fig. 2 shows the several nonlinear I–V

Figure 2 I–V characteristics of the HDPE/graphite nanosheets system
with different graphite particles content. The straight lines correspond to
the linear portions of the curves. (For clarity many points has been omitted.)

curves corresponding to HDPE/graphite nanosheets sam-
ples of different P (volume fraction) for small bias up to
2 V.

The curves, at small voltages, are linear, whereas they
deviate from linearity and bend towards the current axis
with increasing bias. Furthermore, it has been seen that Ic

decrease as graphite nanosheets content decrease, namely,
the closer one is to the percolation threshold, less current
it takes to cause the onset of nonlinearity for a series of
samples with same size. The enhancement of nonlinearity
near pc should be understood in the following way: since
ξ diverges at pc, the current across a conducting channel
also increases remarkably as the percolation threshold
is approached, thus causing enhancement of nonlinear
conduction behavior in the vicinity of pc, for L<ξ (L is
the sample size, ξ is correlation length).

The crossover points Ic, Vc may be thought as defining
current and voltage scales for a sample corresponding to a
given graphite nanosheets content. Fig. 3 reveals collapse
of the I–V curves when plotted in scaled variables (for
clarity, many data corresponding to some given graphite
nanosheets content have been omitted). Apparently, data
collapse only up to a certain point (V/Vc ∼ 1.7) within
the linear region. The divergence of curves beyond cer-
tain value of V/Vc implies that there may be another scale
of current and voltage for any given sample. On the ba-
sis of the collapse of different I–V curves in Fig. 2, the
relationship between I/Ic and V/Vc can be expressed as
[9]:

I/Ic = ϕ(V/Vc) (9)

where φ is a function independent of p. And for, z ≤ 1,
ϕ(z) ≈ z(z = V/Vc).

Interestingly, curves for some given samples, are
smoothly varying within the range of measurements (type
A, Fig. 4), however, other curves (type B, Fig. 5) exhibit
several steps corresponding to sharp change in the sample
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Figure 3 Scaled plots of the I–V curves. Data do not scale at high voltage.

Figure 4 A smooth, nonlinear I–V curve (type A) of a sample with linear
resistance 175 k�. The solid data is a fit to the data with I = �1V +�2V 3.

resistance. We will discuss these two types of nonlinear
conduction [15] in detail.

A typical example of a smooth I–V characteristic is
shown in Fig. 4. Surprisingly, the I–V curves are fitted
well by a cubic term:

I = �1V + �2V 3 (10)

where �1 is the linear conduction and �2 is the second
order conduction. The fitted parameters are 5.7 µ�−1 for
�1 and 0.7 µ�−1 V−2 for �2, corresponding to a linear
resistance of 175 k� for the sample in Fig. 4.

The crossover current Ic scales as:

Ic ∼ �
b/(b−1)
1 �

1/(1−b)
2 (11)

based on the assumption that crossover to nonlinear occurs
when two terms on right side of equation:

I = �1V + �2V b (12)

Figure 5 (a) An I–V characteristics (type B) with several steps marked by
arrows. (b) Plot of R versus I.

become comparable in magnitude. Assuming that �2 ∼
�

y
1 , the generalized form deduced from above relation-

ships is given by [15]:

(b − 1)x + y = b (13)

If y = 0, namely, the scaling of �2 is ignored, Eq.
(11) will be reduced to the expression for x as proposed
by Gefen et al. [5]. Ic and �2 as a function of �1 are
displayed in Fig. 6. Exponents from the slope in Fig. 6
are:

x = 1.28 ± 0.05, y = 1.00 ± 0.25

This is first determination of exponents x and y in
HDPE/graphite nanosheets composites.

I–V characteristics (type B) of a sample are shown in
Fig. 5. Apparently, the onset of nonlinearity is accompa-
nied by small reversible steps in the current-voltage curves
indicating sharp minimum in the resistance R. It should
be pointed out that, considering that uncertainties in the
measurements of V, the closer two consecutive values of
currents are, the more uncertain R becomes. R–I curves
obtained in the case are, actually, noisy. Since the points in
current-voltage curve after a step jump as a whole parallel
to the I axis to higher values of current, it is reasonable
to assess that the structure of R–I curve is true and be-
yond error resulting from measurements. The first such
step mentioned above corresponds to the onset of nonlin-
earity, marked by an arrow. There exists a second step at
about I ∼ 3 µA implying a drop in R. And the subsequent
behavior of R exhibites mild drop, despite the appear-
ance of minima. The structure of graphite nanosheets,
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Figure 6 (a) Plot of crossover current, Ic, versus �1 (µ�−1) for two types
of curves. (b) Plot of second-order conductance, �2 (µ�−1 V−2), versus
�1 for two types of curves.

interfacial interaction between the graphite particles and
HDPE may play an important role in yielding jumps.
Chakrabarty et al. [15] concluded that morphological
structure of conducting fillers should not be responsible
for such steps in their case. However, whether these factors
mentioned above may lead to such outstanding structure
is to be substantiated.

4.2. Applicability of pertinent models to
HDPE/graphite nanosheets composites

In this section, we will discuss which model can
fully account for nonlinear conduction behavior of
HDPE/graphite nanosheets composites.

Based on the NLRRN model, Chakrabarty et al. [14]
derived the following inequality for exponents:

x ≤ (ν/y)(d − 1) (14)

y ≥ 2 − (ν/t)(d − 1) (15)

In 3D, x ≤ 2(ν/t) = 0.86 and y ≥ 1.14. The values
are not in fair agreement with our experimental results in
Fig. 6. Guohua Chen et al. [11] found that the values of x
obtained fell into an approximately range of 1.10 ≤ x ≤
1.30, clearly incompatible with predictions of NLRRN
model. Furthermore, Celzard et al. [16] proposed that y
≥ 0.95 with ν ≈ 0.89 and t ≥ 1.7. The bounds for x and y
can be easily influenced by changing the values of ν and t
and thus we can estimate that the values of x and y in real
systems are non-universal.

Within DRRN model, it has been demonstrated that
x ≤ 1 + ν/t . In three dimensions, x ≤ 1.43, which
is consistent with experimental results. However, the
inequality becomes unpersuasive when the results based
on the assumption of analytic properties of conductance

as a function of voltage is taken into consideration. When
the leading nonlinear term is Vb, the relationship between
x and b can be shown by the following equation:

x = b(b − 1) (16)

For b = 3, in our case, x = 1.5. Disagreement with the
value of x may occur. No expression for y in DRRN model,
in addition, is available, although y = 1.00 is in fair agree-
ment with the prediction of NLRRN model offered by
Celzard et al. [16]. Abhijit et al. [17] suggested that one
could not justify by fitting the I–V curve with a power-law
and finding out the nonlinear exponent because that fitting
was unpersuasive. One may consider to fit the nonlinear
regime of an I–V curve with an nth degree polynomial
function. In fact, an easy choice is fitting the experimen-
tal results with the power-law I = �1V + �2V b, assum-
ing that the leading nonlinear term is Vb (i.e., ignoring
the high-order terms). Selection of the range of the I–V
data for the purpose of the fitting may be responsible for
the confusion that different experimental results were re-
ported in the literature [17]. On the other hand, one may
not know up to what voltage scale (in the nonlinear region)
one should fit the data and thereby one may obtain various
values of the exponents. As a result, prediction of classical
models and experimental results are not in fair agreement.

It is not clear how to interpret the R–I curve in Fig. 5.
Such structure, to our knowledge, has not been reported.
Unfortunately, however, neither NLRRN nor DRRN can
successfully explain this outstanding feature. In fact, there
exists no microscopic mechanism of the DRRN model that
may lead to the decrease of conductance, although simu-
lation based on a 2D lattice found that the conductance as
a function of applied bias increased monotonically [5]. It
is likely that replacing resistors in model discussed above
with conductive elements having complex behavior may
account for such structure. But, whether macroscopic sta-
tistical properties of these conductive elements can result
in this outstanding curve is yet to be determined.

4.3. Conduction mechanism
Nonlinearity in the HDPE/graphite nanosheets compos-
ites may arise from new conduction channels resulting
from applied voltage [18–20]. In real mixtures, there may
be open-ended loops between dangling clusters branch-
ing off the backbone and bridged by thin insulating media.
Consequently, these transport behavior can be regarded as
flow processes in a Cayley Tree (or a Bethe Lattice [1])
with junctions opened or closed at different values of ap-
plied voltage. Relatively wide distribution of connections
can be facilitated by branched structure of the conductive
backbone so that more connections are opened with in-
crease of voltage and thus lead to macroscopic nonlinear
conduction. Such dynamic processes are considered to be
tunneling or hopping conduction processes.

We evaluate that the nonlinear conduction behavior of
HDPE/graphite nanosheets composites may be explained
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well with a combination of NLRRN and DRRN, since nei-
ther of models can satisfactorily interpret nonlinear I–V
characteristics in present case. The combined model, non-
linear random dynamic resistor network (NLRDRN) [21],
is based on the fact that nonlinearity may originate from a
combination of the amplication of nonlinear contribution
of each element and the productions of new conducting
channels with enough strong local fields. As a matter of
fact, the particle–particle interaction of graphite may be
nonlinear because the graphite nanosheets may be more or
less coated by insulating HDPE films. The current passing
through a channel increases remarkably, causing ampli-
cation of nonlinearity near Pc, for the conducting network
becomes very tenuous and the number of conductive path-
ways becomes low as P tends towards Pc from above. On
the other hand, intercluster and intracluster tunneling or
hopping through insulating gaps can yield new conducting
pathways causing supplementary nonliearity [17]. These
are consistent with experimental results that nonliearity
becomes more obvious as Pc is approached from above.
However, detailed studies on the microscopic mechanisms
causing macroscopic nonlinear conduction behavior of
HDPE/graphite nanosheets composites will be compli-
cated, although they are challenging and intriguing.

5. Conclusion
In conclusion, nonlinear I–V characteristics of
HDPE/graphite nanosheets composites near the
percolation threshold were studied. Two types of curves
were observed. Some curves are smooth, while others
display novel feature of sharp steps in I–V curves that
needs further investigation. The exponent for critical
current and the exponent for second-order conductance in
two types of I–V curves have been found. However, two
models, DRRN and NLRRN, cannot completely explain
experimental results in present case. A successful model,
applicable for experimental results, may account for why
some structures are exhibited in some R–I curves, and
absent in others. Such a model must consider the under-
lying microscopic dynamic processes directly related to
structures in I–V curve. A combined model, NLRDRN,

may semiqualitively explain the nonlinear conduction, al-
though whether the applicability of it is to be determined.
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